322. β-Aroylpropionic Acids. Part VIII.* The Effect of Substituents Tetra-aryltetraon the Absorption Spectra of Tetra-arylbutadienes. hydrofurans, 3: 3-Diarylprop-2-ene-1-carboxylic Acids, and yy-Diarylbutyrolactones.

By F. G. BADDAR, (MRS.) ADIBA HABASHI, and Z. SAWIRES.

The structures of some more 2:2:5:5-tetra-aryltetrahydrofurans and 1:1:4:4-tetra-arylbuta-1:3-dienes are confirmed by comparing their absorption spectra with those of the most similar $\gamma\gamma$ -diarylbutyrolactones and 3: 3-diarylprop-2-ene-1-carboxylic acids, respectively, and with those of the tetra-aryltetrahydrofurans and tetra-arylbutadienes studied by Baddar and Sawires.¹

The effect of substituents on the absorption spectra of these compounds is also investigated.

THE structures of the tetra-aryltetrahydrofurans and the tetra-arylbuta-1: 3-dienes which were obtained by the action of arylmagnesium halides on succinic anhydride, methylsuccinic anhydride, and β -aroyl- and β -aroyl- α -methyl-propionic acids and their esters,² have been established by comparing their absorption spectra with those of the compounds studied previously,¹ and with those of the corresponding lactones and carboxylic acids, respectively. The study revealed also the effect of substituents and their position on these spectra.

The spectra were measured with a Beckman DU Quartz spectrophotometer, the tetraaryltetrahydrofurans and the tetra-arylbutadienes being dissolved in "AnalaR" acetic acid-95% alcohol (1:3 v/v), the lactones and unsaturated carboxylic acids in 95% ethyl alcohol. The results are summarised in the Table.

Lactones and Tetrahydrofurans.—The absorption spectra of the lactones were similar in their general features to those studied by Baddar and Sawires.¹ Thus, the absorption of $\gamma\gamma$ -diphenyl- (Ia) and $\gamma\gamma$ -di-o-methoxyphenyl- α -methylbutyrolactone (Ib) were identical with those of yy-diphenyl- and yy-di-o-methoxyphenyl-butyrolactone, respectively.¹

The close relationship between the absorption curves for y-(2-methoxy-5-methylphenyl)- γ -o-methoxyphenyl- (Ic) and γ -(5-chloro-2-methoxyphenyl)- γ -o-methoxyphenyl-butyrolactone (Id) on one hand, and that of (Ib) on the other, gives evidence for their similarity in structure.

The curves for $\gamma\gamma$ -di-2: 5-dimethoxyphenyl- (Ie) and $\gamma\gamma$ -di-2: 5-dimethoxyphenyl- α methyl-butyrolactone (If) are identical. They agree with the absorption of quinol (λ_{max}) 294 m μ ; ϵ 3100)³ with nearly twice the intensity. The bathochromic shift and the large increase in intensity of absorption of these compounds, compared with results for $\gamma\gamma$ -di-omethoxyphenylbutyrolactone 1 and compound (Ib), respectively, are associated with the introduction of the second methoxyl group (cf. phenol³ and quinol). The replacement of the o-methoxyphenyl group by the 4-methoxy-3-diphenylyl and 4:4'-dimethoxy-3diphenylyl group (Ig and h, respectively) causes a ten-fold increase in intensity of absorption.

- Baddar and Sawires, J., 1955, 4469.
 Baddar, El-Assal, and Habashi, preceding paper.
 Morton and Stubbs, J., 1940, 1347; Morton and Sawires, *ibid.*, p. 1052.

^{*} Part VII, preceding paper.

No	. R	Ar	Ar'	$\lambda_{max.}$ (m μ)	Emax.	$\lambda_{\min}, m\mu$	ε _{min.}	
(I) .	Lactones	Ar'ArC·CH ₂ ·CHR·CO						
а	Ме	Ph	Ph	248 i 255 i 258·5 263 i	347 436 521 419	243.5	288	
b	Me	o-MeO·C ₆ H₄	o-MeO·C ₆ H ₄	203 1 272 278	4740 4620	242 275∙5	278 456 0	
c d	H H	2-MeO-5-Me•C ₆ H ₃ 2-MeO-5-Cl•C ₆ H ₃	o-MeO·C ₆ H ₄ o-MeO·C ₆ H ₄	278 279	4820 4630	244 248	4300 327 441	
e f	H Me	$2: 5-(MeO)_{s}C_{6}H_{3}$ $2: 5-(MeO)_{s}C_{6}H_{3}$	$2: 5-(MOe)_{2}C_{6}H_{3}$ $2: 5-(MeO)_{2}C_{6}H_{3}$	294 294	7980 7940	$\begin{array}{c} 254 \\ 253 \end{array}$	455 378	
g h	н	2-MeO-5-Ph•C _e H ₃	o-MeO·C _s H ₄	263.5	20,850	235	6680	
h	н	$2-\text{MeO-5-}(C_6H_4\cdot\text{OMe-}p)\cdot C_6H_8$	o-MeO∙C ₆ H₄	267.5	25,460	263 ·5	6100	
(11)	Tetrahy	vdrofurans Ar'ArC·CH ₂ ·CHR·C	Ar' ₂					
a	Me	o-MeO·C ₆ H ₄	o-MeO·C ₆ H₄	274 277 i	8240 7925			
Ь	н	2-MeO-5-Me·C ₆ H ₃	o-MeO·C ₆ H₄	276 i 278	7970 8160			
C	н	2-MeO-5-Cl·C ₆ H ₃	o-MeO·C ₆ H₄	274 i 278-5	7740 8040			
d	н	$2: 5-(MeO)_{3}C_{6}H_{3}$	$2:5-(MeO)_{3}C_{6}H_{3}$	289 i 292	13,100			
е	Me	$2:5-(MeO)_{3}C_{6}H_{3}$	$2:5-(MeO)_{3}C_{6}H_{3}$	289 i 292	13,520 13,370 13,900			
f	н	$2-\text{MeO-5-}(C_{\bullet}H_{\bullet}\cdot\text{OMe-}p)\cdot C_{\bullet}H_{3}$	o-MeO·C ₆ H₄	269 i 271 272 i	27,650 27,860 27,650			
(111)	Butadi	enes Ar'ArC:CH•CH:CAr'						
a		2-MeO-5-Me·C ₆ H ₃	o-MeO·C ₆ H₄	292·5 i 337·5 220 :	17,750 25,800	267.5	13,390	
ь		2-MeO·C ₁₀ H ₆ (1)	o-MeO∙C ₆ H₄	339 i 292∙5 i 336 i 339	25,750 19,350 26,670 26,740	267	15,520	
(IV)	Acids I	Acids Ar'ArC:CH·CHR·CO ₁ H						
a b	Me H H	o-MeO·C ₆ H ₄ 2-MeO-5-Me·C ₆ H ₃	o-MeO·C ₆ H ₄ o-MeO·C ₆ H ₄	281 284	6190 4950	270 271.5	5500 4470	
c đ	H	$2-MeO-5-Cl \cdot C_6H_3$ 2:5-(MeO)_2C_6H_2	$o-MeO \cdot C_{6}H_{4}$ 2:5-(MeO) ₂ C ₆ H ₃	285∙5 300	5970 8000	$\begin{array}{c} 271 \\ 273 \end{array}$	$4910 \\ 2850$	
e f	Me H	$2: 5-(MeO)_{2}C_{6}H_{3}$ 2-MeO-5-Ph·C_{6}H_{2}	$2: 5-(MeO)_{3}C_{6}H_{3}$ o-MeO·C ₆ H ₄	299 248 i	8350 25,980	$273 \\ 230.5$	3390 22,020	
J				250 * 252 * 255 i	26,080 26,080 25,940	251	26,040	
	(<i>o</i> -Me	O·C ₆ H₄)₃CH•OH		27 3 277 i	4990 4680	244	361	
	1-(2:5-Dimethoxyphenyl)-1:4:4-tri-o-methoxy- phenylbutane-1:4-diol (VIIa)				7430 8210 3900	247	831	
i — Inflexion (approx) • Poor persistence								

i = Inflexion (approx.). • Poor persistence.

A similar relation stands for anisole (λ_{max} , 265 mµ; ϵ 2300),⁴ 4-methoxydiphenyl (λ_{max} , 261 mµ; ϵ 21,000),⁵ and 4:4'-dimethoxydiphenyl (λ_{max} 264 mµ; ϵ 24,610; in EtOH) ⁶ (Williamson and Rodebush ⁷ gave for the last compound λ_{max} , 263 mµ; ϵ 21,700; in *n*-hexane).

The curves for the tetrahydrofuran derivatives (IIa-e) are identical with those of the related lactones (Ib-f, respectively) with nearly twice the absorption intensity.

- ⁴ Wolf and Herold, Z. phys. Chem., 1931, **12**, B, 201; Wolf and Strasser, *ibid.*, 1933, **21**, B, 389. ⁵ Burawoy and Chamberlain, J., 1952, 2310.

- ⁶ Baddar and Sawires, unpublished work.
 ⁷ Williamson and Rodebush, J. Amer. Chem. Soc., 1941, 63, 3018.

The absorption intensity of 5-(4:4'-dimethoxy-3-diphenylyl)tetrahydro-2:2:5-tri-omethoxyphenylfuran (IIf) is roughly equal to the sum of the intensities for $\gamma\gamma$ -di-omethoxyphenylbutyrolactone¹ and 5-(4:4'-dimethoxy-3-diphenylyl)- γ -o-methoxyphenylbutyrolactone (Ih).

The close relation between the absorption of the above-mentioned furans and the related lactones, as well as of the furans studied by Baddar and Sawires,¹ is strong evidence for the structure assigned to these compounds.

Dienes and Acids.—The curves for the tetra-arylbutadienes (IIIa and b) agree closely with those for 4-o-ethoxyphenyl-1:1:4-tri-o-methoxyphenyl- and 1:1:4-tri-o-ethoxyphenyl-4-o-methoxyphenyl-buta-1:3-diene.¹ This, as well as the fluorescence under ultraviolet irradiation (mercury-arc quartz lamp),¹ is strong evidence for the structure assigned to these compounds.

The intensity of absorption of 3:3-di-o-methoxyphenyl-1-methylprop-2-ene-1carboxylic acid (IVa) is identical with that of 3:3-di-o-methoxyphenylprop-2-ene-1carboxylic acid,¹ and much lower than those of 3:3-diphenyl- and 3:3-di-p-methoxyphenylprop-2-ene-1-carboxylic acid.¹ This is attributed to the steric inhibition of resonance of the o-methoxyphenyl group with the ethylenic linkage,¹ a phenomenon even more pronounced with the acids (IVb-e), in which the substituent in position 5' exerts an additional steric effect. As a result the acids have spectra very close to those of the corresponding lactones (Ic-f, respectively), with a slight bathochromic shift (ca. 6 mµ), indicating very strong inhibition of resonance between the disubstituted phenyl groups and the ethylenic linkage.

The butane-1: 4-diol structure assigned to the compound (VIIa) of the preceding paper was supported by its absorption spectrum, which is nearly equivalent to the summation of those for di-o-methoxyphenylmethanol and the mean values for $\gamma\gamma$ -di-o-methoxyphenylbutyrolactone and (Ie).

FACULTY OF SCIENCE, CAIRO UNIVERSITY CAIRO, EGYPT.

[Received, September 17th, 1956.]